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Abstract

A Bayes correlated equilibrium of an incomplete information game
pG,Sq is any outcome that an omniscient mediator could induce with an
appropriate information design policy. In this paper I introduce a refine-
ment of Bayes correlated equilibrium called “hear-no-evil Bayes correlated
equilibrium” which further requires that no player can make themself bet-
ter off by publicly committing to ignore the mediator’s message. I provide
a simple example in which an agent in a contest strictly prefers not to learn
his opponent’s type. I show that the set of hear-no-evil equilibria of an
incomplete-information game pG,Sq is shrinking in S if and only if the
set of hear-no-evil equilibria of pG,Sq is the same as the set of Bayes
correlated equilibrium of pG,Sq. I provide an example of a BCE which
satisifies the HNE condition but is Pareto-dominated by a BCE which
fails the condition. I also show that in the parameterized 2x2x2 coordi-
nation game of Taneva (2019), all the symmetric BCE satisfy the HNE
condition.

1 Introduction
Consider the following example.1 Two firms must sequentially make a choice
between researching technology A and researching technology B. Consumer
preferences are not known, and ex ante both firms believe that each technology
is equally likely to matter more to consumers. If the two firms invest in different
technologies, whichever firm chooses the consumers’ preferred technology earns
monopoly profits of $6, and the other firm earns $0. If the two firms invest in the
same technology, they split the market and earn duopoly profits of $2 each. The
two firms are identical, except that one firm must make their investment decision
first, and the second firm can observe this decision before making their own.
Assume that each firm seeks only to maximize their expected profit. Absent
any further information, the first firm will choose a technology at random to
invest in, and the second firm will invest in the other technology. This yields
an expected profit of $3 to each firm. Now suppose a consultant makes a public
offer to reveal consumer preferences to the first firm and the first firm only. If
the first firm accepts, they will invest in the consumers’ preferred technology,

1A version of this example first appears in Kamien, Tauman, and Zamir (1990)
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and the second firm will mimic this choice, guaranteeing each firm profits of
$2. Here, both firms strictly prefer that the first firm is not able to observe the
consultant’s report before making its investment decision.

Bergemann and Morris (2016) introduce the concept of Bayes correlated
equilibrium to discuss the outcomes of an incomplete-information game that can
be induced by an omniscient mediator. They show that the mediator can induce
players to follow any “obedient” decision rule, in the sense that upon hearing
the mediator’s recommendation, each player weakly prefers to follow it. Since
the set of obedient decision rules is defined by these incentive-compatibility
constraints, Bergemann and Morris (2016) show that as the players’ baseline
level of information increases, the set of obedient decision rules is shrinking.

In the earlier example, if the mediator reveals the state of the world to
the first player alone, this induces the obedient decision rule in which the first
player correctly guesses the state and the second player mimics him. Implicitly
this assumes that the first player has no choice but to hear the mediator’s
recommendation - while he prefers to follow the recommendation once he hears
it, he strictly prefers not to hear it in the first place.

In this paper I introduce the concept of “hear-no-evil” equilibrium, a re-
finement of Bayes correlated equilibrium in which players not only prefer to
follow recommendations they are given, but also would choose to hear the rec-
ommendations if given a choice. I show that the set of hear-no-evil equilibria is
shrinking in the players’ baseline information if and only if every Bayes corre-
lated equilibrium of the game is also a hear-no-evil equilibrium. To illustrate the
concept I provide an example of a contest in which one player strictly prefers not
to be informed of his opponent’s valuation of winning. I also provide an exam-
ple where a hear-no-evil equilibrium is Pareto-dominated by a Bayes correlated
equilibrium that fails the hear-no-evil condition. Finally, I study the parame-
terized binary coordination game of Taneva (2019) [11], for which I show that
every symmetric Bayes correlated equilibrium is also a hear-no-evil equilibrium.

This equilibrium concept is salient for a few reasons. One can think of a
group of friends playing a card game or board game around a table. The designer
of the game may find it desirable that every BCE of the incomplete information
games that arise satisfies the hear-no-evil condition, so that no player has an
incentive to convey harmful information to their opponents through table talk.
One can also think of a regulator who must decide what censorship policy to
impose on some channel. A naive solution might be to censor any information
that harms the agent receiving it. However, as I show in section 4, this may be
very harmful to social welfare compared to a no-censorship approach.

There is another interpretation of the model presented here. If we know
that agents have some baseline level of information S, but we are not sure what
information they possess or can acquire beyond that, the set of BCE is the set
of possible outcomes that could arise. Thus we can use the set of BCE to make
robust predictions about what we can expect to see occur for any information
costs the agents may have. This assumes that information acquisition is covert
- not only do players not know what other players have learned, they also do not
know what questions the other players have asked. Here, we can use the hear-
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no-evil condition to further restrict the set of outcomes that may arise when
information acquisition is overt. When players do not know what other players
have learned, but do know what questions they have asked, the set of outcomes
that could arise for arbitrary information costs is exactly the set of HNEBCE.
Such situations can arise when information acquisition is capital-intensive or
otherwise difficult to hide. For example, the public may not know the findings
of Uber’s research into self-driving cars, but the public is aware that Uber is
conducting this research.

The rest of this paper is structured as follows. The remainder of this sec-
tion provides a brief review of related literature. Section 2 defines the sets of
Bayes correlated equilibria and hear-no-evil equilibria, and includes the main
result. Section 3 provides an example to illustrate the concept of hear-no-evil
equilibrium, where I state the constraints defining the set of BCE, as well as
the additional constraint required for the set of HNEBCE. Section 4 describes
a counterexample showing that restricting attention to the set of HNEBCE can
harm agent welfare. Section 5 considers a parameterized 2x2x2 coordination
game, and shows that all symmetric BCE satisfy the hear-no-evil condition.
Section 6 concludes.

1.1 Related Literature
The seminal works of Blackwell (1951, 1953) [5] [4] show that in a standard de-
cision problem under uncertainty (i.e. a single player Bayesian game), giving an
agent access to more information is equivalent to expanding the set of expected
payoff vectors over which the agent can choose. In this case an expected-utility
maximizer always prefers more information to less.

However, in environments with more than one player, having access to more
information need not make agents better off. Perhaps the first example of this
in the literature comes from Hirshleifer (1971) [7]. In a pure exchange econ-
omy with two states of the world and risk-averse traders, where some agents
are disproportionately endowed with claims that pay out in state a and others
disproportionately endowed with claims that pay out in state b, absent informa-
tion agents will trade contingent claims to smooth their consumption between
the two states of the world. However, if the state of the world is revealed before
trade can take place, the ability to smooth consumption through trade vanishes.
Here, such a society of risk-averse agents would collectively be willing to pay
to suppress the revelation of this information until after trade has taken place.
While Hirshleifer focuses on the social cost of information in this example, we
can similarly think of a single risk-averse agent who prefers not to be informed
of the state of nature, knowing that if he is informed, no other agent will be
willing to trade with him, as in Akerlof (1970) [1].

Neyman (1991) [8] points out that learning some information can only make
a player worse off insofar as other players are aware of it: If there’s a chance
that I may receive some private information and everybody is aware of this,
I am better off in the realizations where I do receive the private information
than those in which I do not. With this in mind, when I talk about an agent
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preferring not to receive some information, I mean that the agent prefers to play
a version of the game in which he never receives the information.

Bassan, Scarsini, and Zamir (1997) [3] provide a number of examples of
games where the value of information may be negative.

Bassan et al (2003) [2] finds a condition under which refining the information
structure of a game leads to a Pareto-improvement of equilibrium outcomes.
Namely, if a game has a unique Pareto-optimal outcome, then that outcome
is supported in a Nash equilibrium, and that outcome Pareto-dominates any
Nash equilibrium that arise from a coarsening of the information structure of
the game. Additionally, if the Pareto frontier of a game is not a singleton, there
exists a coarsening of the game’s information structure with a Nash equilibrium
that at least one agent strictly prefers to any equilibrium of the original game.

Giving players the ability to commit to ignoring their information has a
parallel in giving players the ability to commit to ruling out certain actions, as
in the commitment games of Renou (2009) [9].

Recently it has come up in the information design literature that a receiver
may be made worse off by refining his private information. Kolotilin (2018)
includes a school-employer example in which the school chooses a more rigorous
grading scheme when the employer’s interview is less informative, to the extent
that the employer prefers to have access only to the less informative interview,
instead of the more informative interview. Roesler and Balaz-Szentes (2017)
[10] present an example of bilateral trade in which the buyer prefers to observe
a garbling of his true valuation, rather than learning his true valuation, of the
seller’s good.

2 Model

2.1 Bayes Correlated Equilibrium
The set of players is finite and given by 1, 2, ..., I with typical player i. The set
of states Θ is finite with typical element θ.

A basic game G “ ppAi, uiq
I
i“1, ψq contains for each player i a finite action

set Ai and a utility function ui : A1,ˆ... ˆ AI ˆ Θ Ñ R, as well as a full-
support prior belief ψ P ∆``pΘq shared by all agents, according to which θ P Θ
is distributed.2

An information structure S “ ppTiqIi“1, πq consists of a finite set Ti of types
for each player i and a signal distribution π : Θ Ñ ∆pT1ˆ ...ˆTIq. Each “type”
of agent is distinguished by their beliefs about the state of the world and higher-
order beliefs about the types of other players. We can refer interchangeably to
an agent i as being of type ti, and as having observed signal realization ti.

As in Bergemann and Morris (2016), among others, let the pair of basic
game G and information structure S define a game of incomplete information
pG,Sq. Write A “ A1 ˆ ...ˆAI and T “ T1 ˆ ...ˆ TI .

2Here ∆``pΘq is the set of probability distributions over Θ for which all elements are
assigned strictly positive probability.
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Given a game pG,Sq, a decision rule σ : T ˆ Θ Ñ ∆pAq can be thought of
as a strategy for a mediator who observes the realization of the state θ P Θ and
player types t P T , who then sends an action recommendation ai P Ai to each
player i.

A decision rule σ is obedient if, for each agent i, given any realization of ti
and action recommendation ai, the agent is weakly better off choosing action
ai than any other action a1i P Ai.

A decision rule σ is defined to be a Bayes Correlated Equilibrium for pG,Sq
if it is obedient for pG,Sq. Let BCEpG,Sq denote the set of Bayes correlated
equilibria of the game of incomplete information pG,Sq.

One of the main results of Bergemann and Morris (2016) links the set of
Bayes correlated equilibria of pG,Sq to the set of outcomes that can arise when
players may view other information structures in addition to S. In order to
state and discuss their results, I will first establish a few definitions about com-
binations of information structures.

If an agent observes two signals, this can be written equivalently as that agent
observing a single “combined” signal. Define S˚ “ pT˚, π˚q to be a combination
of two information structures S1 “ pT 1, π1q, S2 “ pT 2, π2q if T˚i “ T 1

i ˆ T
2
i for

all i, and the marginal distributions over T1 and T2 are preserved, that is,
ÿ

t2PT 2

π˚pt1, t2|θq “ π˚pt1|θq @t1 P T 1, θ P Θ,

ÿ

t1PT 1

π˚pt1, t2|θq “ π˚pt2|θq @t2 P T 2, θ P Θ.

Because no restrictions are placed on the correlation between S1 and S2, there
can be many possible information structures resulting from the combination of
the two.

Say that S˚ is an expansion of S1 if there is some other information structure
S2 such that S˚ is a combination of S1 and S2. Note that every information
structure S is an expansion of itself - specifically it is the combination of itself
and a completely uninformative information structure S1. For an example of
such an uninformative information structure, consider S1 “ ppT 1i qIi“1, π

1q where
|Ti| “ 1 for all i.

Say that S˚ is individually sufficient for S if and only if there exists an
expansion of S that has the same canonical representation as S˚.3 Where this
is the case I will write S˚ ą S.

Bergemann and Morris (2016) prove two main results about Bayes correlated
equilibria. First, they show that if σ is a BCE of pG,Sq, then there is an
expansion S˚ of S such that there is a Bayes Nash equilibrium of pG,S˚q in
which agents act as if according to σ. Second, they prove that the set of BCE

3Note that Bergemann and Morris (2016) start by defining individual sufficiency in a
different manner, but then show that their definition is equivalent to this one. The concept
of a “canonical representation” of an information structure comes from Mertens and Zamir
(1985). This is the representation such that no two types share both the same beliefs about
the state and higher-order beliefs about the beliefs of other players.
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of pG,S˚q is a subset of the set of BCE of pG,Sq for every basic game G if and
only if S˚ is individually sufficient for S.

2.2 “Hear-No-Evil” Equilibrium
Fix a basic game G and two information structures S “ pT, πq, S˚ “ pT˚, π˚q
such that S˚ is an expansion of S. This means there is some other information
structure S1 “ pT 1, π1q such that S˚ is a combination of S and S1, so we can
write T˚ “ T ˆ T 1. As we know, it is not necessarily the case that every agent
will want to observe the information bestowed upon him by S1 if given a choice.
To capture this idea, I will define a modified information structure Ŝj which is
identical to S˚ for all agents except agent j, for whom it is identical to S.

Formally, define T̂ j “ pT˚1 , ..., Tj , ..., T
˚
I q and π̂

j : Θ Ñ ∆pT˚1 , ..., Tj , ..., T
˚
I q

by

π̂jppt1, t
1
1q, ..., tj , ...ptI , t

1
Iq|θq “

ÿ

t1
jPT

1
j

π˚ppt1, t
1
1q, ..., ptj , t

1
jq, ...ptI , t

1
Iq|θq

for all ppt1, t11q, ..., tj , ...ptI , t1Iqq P T̂
j and all θ P Θ.

Say that S˚ satisfies the hear-no-evil condition for player j with respect to
pG,Sq if there is some Bayes Nash equilibrium of pG,S˚q that player j weakly
prefers to some Bayes Nash equilibrium of pG, Ŝjq. I take this as a necessary
condition for player j to not unilaterally commit to rejecting his signal, if he
knew no other player would do so. There are other reasonable conditions that
can be posed - for example, requiring that j to prefer his least favorite equilib-
rium of pG,S˚q to his least favorite equilibrium of pG, Ŝjq - but for now I will
focus on this weakest possible condition.

A decision rule σ constitutes a hear-no-evil Bayes correlated equilibrium of
pG,Sq if there is an expansion S˚ of S such that (i) a BNE of pG,S˚q induces σ
and (ii) S˚ satisfies the hear-no-evil condition with respect to pG,Sq for all play-
ers. Let HNEpG,Sq denote the set of hear-no-evil Bayes correlated equilibria of
the incomplete information game pG,Sq. Note that since S vacuously satisfies
the hear-no-evil condition with respect to itself for all players and games, all
Bayes Nash equilibria of pG,Sq are also hear-no-evil Bayes correlated equilibria
of pG,Sq

2.3 Result
As shown by Bergemann and Morris (2016), for two information structures
S and S˚, S˚ is individually sufficient for S if and only if BCEpG,S˚q Ď
BCEpG,Sq for all basic games G. Here I pose a similar question about the
set of hear-no-evil equilibria. Specifically, for a fixed game G, I show that
HNEpG,S˚q Ď HNEpG,Sq for all S˚ individually sufficient for S if and only
if the hear-no-evil condition has no bite. The proof relies on S˚ vacuously
satisfying the hear-no-evil condition with regards to itself. Thus if we assume
that HNEpG,S˚q Ď HNEpG,Sq for all S˚ individually sufficient for S, then
any expansion of S must satisfy the hear-no-evil condition for each player.
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Theorem 2.1 For a fixed game G and information structure S, HNEpG,S˚q Ď
HNEpG,Sq for all S˚ ą S if and only if HNEpG,Sq “ BCEpG,Sq.

Proof (Ñ) Suppose HNEpG,S˚q Ď HNEpG,Sq for all S˚ with S˚ ą S.
Since S˚ satisfies the HNE condition with respect to itself for all agents, the
equilibrium associated with S˚ is trivially found in HNEpG,S˚q. Then this
equilibrium must also be in HNEpG,Sq, implying that S˚ satisfies the HNE
condition for all i with respect to S. Thus for all S˚ ą S, S˚ satisfies the HNE
condition with respect to S for all i, implying the HNE condition has no bite
for any expansion of S. Thus we have HNEpG,Sq “ BCEpG,Sq.

(Ð) Assume that HNEpG,Sq “ BCEpG,Sq. From Theorem 2 of Berge-
mann and Morris (2016), we know that BCEpG,S˚q Ď BCEpG,Sq for any
S˚ ą S. Since HNEpG,S˚q Ď BCEpG,S˚q, we must have HNEpG,S˚q Ď
HNEpG,Sq as well.

Note that this holds for alternative definitions of the hear-no-evil condition
that have S satisfying the hear-no-evil condition with respect to itself for all
S. For example, it would still apply if the hear-no-evil condition required each
player to weakly prefer all the equilibria of pG,S˚q to all the equilibria of pG,Sq.
However, it would not hold if we assume the hear-no-evil condition requires
agents to strictly prefer some equilibria of pG,S˚q to some equilibria of pG,Sq.

3 Example
The following example is a special case of the one-sided incomplete information
contest examined in Denter, Morgan, and Sisak (2014)[6], which also appears
in Zhang and Zhou (2014)[12].

There is a contest between two parties A and B, who simultaneously choose
how much effort to exert. The cost to party i of exerting effort xi is normalized
to xi. The probability that party i wins the contest when effort levels are
pxA, xBq is given by pipxA, xBq “ xi

xA`xB
. The value to party i of winning the

contest is given by vi. Both players are expected utility maximizers.
Suppose further that vA “ 10, and vB is randomly distributed with PrpvB “

5q “ .5 “ PrpvB “ 15q. Suppose B knows the value of vB , but A does not.
As shown by Denter, Morgan, and Sisak (2014) in the general case, and which
I will demonstrate in the specific case below, A will strictly prefer to remain
uninformed of the value of vB , assuming that B is aware of whether or not A
knows vB . One can imagine B posting the value of vB to his LinkedIn profile,
which will notify him of who has viewed it.

To make the example simpler, I will assume that A only has three effort
levels to choose from: 2.222, which is optimal when A is informed that vB “ 5,
2.295, which is optimal when A is not informed of vB , and 2.4, which is optimal
when A is informed that vB “ 15. Similarly, I will assume that B only has four
effort levels to choose from: 1.093, which is optimal when vB “ 5 but A is not
informed of vB , 1.111, which is optimal when A is informed that vB “ 5, 3.573,
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which is optimal when vB “ 15 but A is not informed of vB , and 3.6, which is
optimal when A is informed that vB “ 15.4

Payoffs are described in the following matrices, where agent i’s payoff is
given by vip xi

xA`xB
q ´ xi. Decimals are rounded to three places except where

further digits are needed to compare values.

When vB “ 5:

1.093 1.111 3.573 3.6
2.222 4.481, .5555671 4.444, .5556 1.612, -.490 1.595, -.508
2.295 4.479, .5200 4.443, .51994 1.616, -.529 1.598, -.547
2.4 4.471, .472 4.436, .471 1.618, -.582 1.6, -.6

When vB “ 15:

1.093 1.111 3.573 3.6
2.222 4.481, 3.853 4.444, 3.889 1.612, 5.6755 1.595, 5.6752
2.295 4.479, 3.746 4.443, 3.782 1.616, 5.5604 1.598, 5.5603
2.4 4.471, 3.601 4.436, 3.636 1.618, 5.39987795 1.6, 5.4

These payoff matrices define the basic game G, and I will endow it with the
information structure S “ pTA ˆ TB , πq, where TA “ ttAu, TB “ ttB5, tB15u,
and πptA, tb5|vB “ 5q “ 1, πptA, tB15|vB “ 15q “ 1. This information struc-
ture conveys no information about the state to A, but fully reveals the state
to B. Next, define information structure S˚ “ pT˚A ˆ T˚B , π

˚q, where T˚A “

ttB5, tA15u, T
˚
B “ TB , and π˚ptA5, tB5|vB “ 5q “ 1, π˚ptA15, tB15|vB “ 15q “ 1.

This information structure fully reveals the state to both A and B. I claim that
S˚ fails the hear-no-evil condition with respect to pG,Sq for player A. To prove
this, I will show that A strictly prefers the unique equilibrium of pG,Sq to the
unique equilibrium of pG,S˚q.

It is easily verifiable that in game pG,S˚q, when both A and B are informed
of vB , when vB “ 5, (2.222,1.111) is the unique pure-strategy equilibrium, and
when vB “ 15, (2.4,3.6) is the unique pure-strategy equilibrium. In the appendix
I show that pG,S˚q has no mixed-strategy equilibria. The expected payoff to A
in this case is .5(4.444 + 1.6)=3.022.

Since each player’s action here is fixed by the state of the world, we can
describe this outcome with the decision rule σ˚p¨|θq, where σ˚p2.222, 1.111|vB “
5q “ 1, and σ˚p2.4, 3.6|vB “ 15q “ 1. Since S˚ is an expansion of S, and this
outcome is a Bayes Nash equilibrium of S˚, we see that σ˚ is a Bayes correlated
equilibrium of our original game pG,Sq. Also note that σ˚ can only be induced
by an information structure equivalent to S˚: any information structure which
does not fully inform A of vB cannot result in a decision rule where A’s action
is fixed by vB .

To determine whether σ˚ is a hear-no-evil Bayes correlated equilibrium of
pG,Sq, we must examine what happens when A commits to ignoring the addi-
tional information conveyed by S˚. When A rejects the additional information
contained in S˚, the resulting information structure ŜA is identical to S, since
S˚ conveyed no additional information to B. Thus in order to be a hear-no-evil
Bayes correlated equilibrium, A must weakly prefer playing according σ˚ to

4The optimal effort levels when A is uninformed were calculated using Proposition 1 in
Zhang and Zhou (2014), and the optimal effort levels when A is informed were calculated
using the formulas in the appendix of Denter, Morgan, and Sisak (2014).
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playing some Bayesian Nash equilibrium of pG,Sq.
In game pG,Sq, when A is not informed of vB , but B is, there exists a pure-

strategy equilibrium where xA “ 2.295, xBp5q “ 1.093, and xBp15q “ 3.573.
To see this, first observe that B is best responding in both cases. Given this,
choosing effort 2.222 yields A payoff .5(4.481+1.612)=3.0465, choosing effort
2.295 yields A expected payoff .5(4.479 + 1.616)= 3.0475, and choosing effort 2.4
yields A expected payoff .5(4.471+1.618)=3.0445, hence 2.295 is a best response
for A. In the appendix I show I that there are no other equilibria of pG,Sq. Note
that this equilibrium gives A an expected payoff of 3.0475, which is higher than
the 3.022 A would receive under complete information.

Thus, A strictly prefers the unique equilibrium of pG,Sq to the unique equi-
librium of pG,S˚q. Since the decision rule σ˚ can only be induced by an infor-
mation structure equivalent to S˚, and S˚ fails the hear-no-evil condition with
respect to pG,Sq for player A, we can conclude that σ˚ is not a hear-no-evil
Bayes correlated equilibrium of pG,Sq.

4 Agent Welfare
The following example shows that a BCE which fails the hear-no-evil condition
for each player may nonetheless Pareto-dominate a HNEBCE.

There are two players. The state of the world ω is either 0 or 1, and it is
common knowledge that Prpω “ 0q “ .1. The row player must choose either
0 or 1, and the column player must choose either L or R. Payoff matrices for
each state are given below. I will refer to the row player’s action as a1 and the
column player’s action as a2.

0:
L R

0 -19, 1000 1, -12
1 -20, -1 0, 0

1:
L R

0 -20, 1000 0, -12
1 -19, -1 1, 0

The row player prefers to choose action 1 whenever Prpω “ 1|¨q ą .5. The
column player prefers to choose action R when a1 “ 1, and action L when
a1 “ 0.

It is a BCE for the row player to always match his action to the state of
the world, and the column player to choose action L in state 0, and action R in
state 1. This gives the row player expected payoff .1*-19 + .9*1 = -1, and the
column player expected payoff .1*1000 + .9*0 =100

However it is not a HNEBCE, since if the row player could publicly reject
his information, the unique equilibrium would be to always play (1,R), which
earns him expected payoff .9.

Now consider the following twist. There are two copies of the game played
simultaneously, one where player 1 plays the role of row player and player 2
plays the role of column player, and one where player 1 plays the role of column
player and player 2 plays the role of row player. Each player’s strategy must
specify what they do in each game, so each player has four possible strategies:
0L, 0R, 1L, 1R.
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Again, it is a BCE for the row player player to always match his action to
the state and the column player player to choose L in state 0 and R in state 1.
Since each player gets to play each role once, this earns each player expected
payoff -1 + 100 = 99.

However, this is again not a HNEBCE. If one player unilaterally rejected
their information, then in the game where they are the row player, the unique
equilibrium will be (1,R), earning utility .9, and in the game where they are the
column player, they can simply choose action L regardless of state (since they
will no longer be informed of the state), earning payoff .1*1000 + .9*-1=99.1.
This gives them expected payoff 100 between the two games, so they are better
off than if they had not rejected the mediator’s information.

Importantly, there is no HNEBCE of this combined game that can generate
expected payoffs of (99,99) or higher. The only way for a player to earn a
payoff of 99 is for the outcome (0,L) to occur with probability at least .09 in the
game where they are the column player (since no outcome can generate more
than utility 1 when they are the row player). But if the row player knows the
column player will play L with probability .09, his utility from that game can
be no higher than .91*1 + .09 * -19 = -.8. Rejecting his information will ensure
outcome (1,R) is always played when he is the row player, earning payoff .9
for that game. This is an increase of 1.7. However, rejecting his information
will also lower his payoff in the game where he is the column player. When he
has no information as the column player, he is best off always choosing action
L (instead of only choosing L when his opponent would choose 0). But this
lowers his utility by at most 1. Thus rejecting his information gives him more
utility (1.7) in the game where he is a row player than it loses him (1) in the
game where he is the column player. Hence rejecting his information is strictly
preferred. Thus any BCE where outcome (0,L) arises with probability at least
.09 fails the HNE condition, and thus no HNEBCE can give either player a
payoff of 99 or higher.

This has an interesting implication. If a mediator seeks to maximize any
increasing function of agent welfare, his preferred outcome fails the hear-no-
evil condition. If some regulator were to restrict the mediator to only inducing
HNEBCE outcomes, both players would be made worse off. This suggests that
even if a piece of information may be harmful to the agent possessing it, cen-
soring that information may not be socially beneficial.

5 Coordination games
Consider the following parameterization of a coordination game, as examined in
section IV of Taneva (2019). The state of the world is either 0 or 1, and each is
equally likely. When the state is ω the payoffs are as given in Gω, where c ě 0
and d ě 0.
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G0 :
0 1

0 c, c d, 0
1 0, d 0, 0

G1 :
0 1

0 0, 0 0, d
1 d, 0 c, c

Players care about coordinating their actions with the state of the world and
with each other. Each player prefers to correctly match their action to the state
of the world, regardless of the action of the other player. This parameterization
captures a range of coordination games. When c ą d, agents prefer to be correct
together, as in an investment game. When d ą c, agents prefer to be correct
alone; for example, if agents must decide whether to plant a dry crop or a wet
crop, where being correct alone guarantees an agent monopoly profits, while
being correct together guarantees them duopoly profits. When c “ d, agents
care only about matching the state, and not about the other agent’s action.
For a more in-depth analysis of the coordination game and its Bayes correlated
equilibria, see Taneva (2019).

Taneva (2019) assumes the information designer treats the two agents as
indistinguishable, and restricts attention to such “symmetric” BCE. Such sym-
metric equilibria can be described by two parameters: the probability r of both
agents matching their actions to the state, and the probability q of a given
agent matching his action to the state. For example, the outcome in which both
agents always match their actions to the state is described by pq, rq “ p1, 1q,
and the outcome where exactly one agent always matches his action to the state
is described by pq, rq “ p.5, 0q.

Notably, Taneva (2019) only considers BCE of the basic game, where nei-
ther player has any information beyond the mediator’s signal. Maintaining (i)
the restriction to symmetric equilibria, and (ii) the assumption that neither
player has any baseline information, I will show that every remaining BCE is a
HNEBCE.

Below I identify one equilibrium that will always exist when one player rejects
their information.

Lemma 5.1 If one player rejects his information, then there is a BNE of the
game that arises where: (i) he randomize between his actions with equal prob-
ability, and (ii) his opponent chooses the action she believes is more likely to
match the state.

Proof If one player does not know anything about the state, and chooses to
randomize uniformly between his two actions, his opponent can do no better
than to choose the action she believes is more likely to match the state. If her
strategy is to try to match the state, the first player can do no better than
randomizing uniformly between his two actions, since he is indifferent between
them.

Recall that for an information structure to satisfy the hear-no-evil condition,
we require only that each player prefers his favorite equilibrium that might arise
after hearing the mediator’s information to his least-favorite equilibrium that
might arise after unilaterally rejecting his information. That is, information
structure S˚ will satisfy this condition if each player i prefers any BNE of
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pG,S˚q to any BNE of pG, Ŝiq, i “ 1, 2, where again Ŝi is the information
structure where player i chooses not to hear the mediator’s recommendation,
and the other player does choose to hear it. To prove that a given BCE is a
HNEBCE, the general approach I will take here is to show that there is some
BNE of pG,S˚q in which player i’s opponent plays the same strategy as in some
BNE of pG, Ŝiq. Since his opponent’s strategy does not change between these two
BNE, the BNE of pG,S˚q cannot be worse for player i than the corresponding
BNE of pG, Ŝiq (since in the BNE of pG,S˚q, player i has the option to deviate
to the strategy he plays in pG, Ŝiq).

Lemma 5.2 All symmetric BCE with q ą .5 are HNEBCE.

Proof Suppose q ą .5. Then when P2 follows the mediator’s recommendation,
she is taking the action she believes is more likely. Suppose P1 rejects the
mediator’s signal (and so does not hear the mediator’s recommendation). In
the BNE described by the previous lemma, P2 will be taking the action she
believes is more likely. Thus P1’s choice to reject his information does not
change his opponent’s action, and so rejecting his information makes him worse
off.

When c ą d, any signal from the mediator that induces a BCE with q ă .5
can also induce a BCE with q ą .5. This is because, for whatever strategies are
associated with the BCE with q ă .5, each agent can also play the strategy which
takes the opposite action, and if both agents take this new strategy, neither will
want to deviate. I formalize this intuition in the following lemma.

Lemma 5.3 If c ą d, all symmetric BCE are HNEBCE.

Proof If q ą .5, we are done, so suppose q ă .5 for some symmetric BCE
pq, rq. Then by definition there is some information structure S such that action
distribution pq, rq is induced a BNE of pG,Sq. Let s1 and s2 denote the strategies
played by player 1 and player 2 respectively in this BNE of pG,Sq. Consider the
strategies s11 and s12, defined such that player i takes the opposite action under
strategy s1i as they do under strategy si. Then s11, s12 is also a BNE of pG,Sq: if
either player unilaterally deviates, they will be less likely to match their action
to the state, and less likely to match their action to the other player’s. Since
c ą d, such a unilateral deviation is never profitable. The associated symmetric
BCE can be written as pq1, r1q “ p1 ´ q, 2q ´ rq. Notably, q1 ą .5, and so by
the previous lemma, information structure S satisfies the hear-no-evil condition
with respect to no information for the game G.

Note that the proof of this lemma hinges on the weakness of the HNE con-
dition. Currently it requires only that p1 prefers the p1-best equilibrium that
could arise after hearing the mediator’s information to the p1-worst equilibrium
that could arise after rejecting the mediator’s information. However, it may also
be reasonable to compare the p1-worst equilibria in either case.
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As an example, c “ 100, d “ 1, and q “ r “ .1 (this is a BCE because neither
player wants to unilaterally deviate from following the mediator’s recommen-
dation). If player 1 expects that the other player will follow the mediator’s
recommendation, he could unilaterally reject his information and be strictly
better off regardless of which subsequent BNE is played.

In this case the public rejection of information can also serve as a way to
avoid bad equilibria, which is not captured by the current "weak" hear-no-evil
condition. Under the current definition, players are maximally optimistic about
what will happen after seeing the mediator’s signal, and maximally pessimistic
about what will happen without it.

Next I move to the case where c ď d.

Lemma 5.4 If c ď d, all symmetric BCE are HNEBCE.

Proof If q ą .5 we are done, so assume that q ă .5 for some symmetric BCE
pq, rq. Then for some information structure S˚ and strategies s1, s2, the strategy
pair ps1, s2q supports the BNE pq, rq of the game pG,S˚q. Consider the strategy
pair ps11, s12q, where s1i is defined as the strategy that takes the opposite action
of strategy si for each realization of S˚, for i “ 1, 2. I claim that neither player
has an incentive to deviate from s11, s

1
2, since neither player had an incentive

to deviate from s1, s2. Deviating from s11, s
1
2 would make an agent strictly less

likely to match their action to the state, and no more likely to match the state
alone, than if they deviated from s1, s2. Thus deviating from s1, s2 is more
appealing to each agent than deviating from s11, s

1
2. Since s1, s2 was a BNE,

then s11, s12 must also be a BNE, which I will also refer to as the symmetric BCE
pq1, r1q, where q1 “ 1 ´ q and r1 “ 1 ´ p2q ´ rq. Note that player 1 has the
option of responding to strategy s12 by randomizing uniformly over his actions,
but chooses s11 as a best response instead. Thus player 1 prefers this equilibrium
to the equilibrium when player 1 rejects his information where he randomizes
uniformly over his actions while player 2 plays strategy s12.

The following proposition summarizes the results of these lemmas.

Proposition 5.5 Any symmetric BCE of the base game is an HNEBCE, for
any c ě 0, d ě 0.

6 Conclusion
In this paper I have laid out a refinement of Bayes correlated equilibrium which
requires that players be willing to hear the mediator’s recommendation, in addi-
tion to being willing to follow the recommendation once they hear it. While the
original concept of Bayes correlated equilibrium is useful for making predictions
when information acquisition is covert, so that no agent knows the information
structure acquired by another agent nor its realization, my “hear-no-evil Bayes
correlated equilibrium” serves the same purpose when information acquisition
is overt, and agents are aware of the information structures acquired by other
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agents but not their realizations. This is relevant in situations where it can be
hard to hide what one is researching - for example, if a firm must build a new
facility to conduct a certain type of R&D, or if a researcher must apply for a
grant before beginning work.

In contrast to the set of Bayes correlated equilibra, we have seen that the set
of hear-no-evil equilibria need not be decreasing in the players’ baseline level of
information. Instead, for any game where that is true for the set of hear-no-evil
equilibria, the set of hear-no-evil equilibria must be equal to the set of Bayes
correlated equilibria. I have illustrated the equilibrium concept with an example
of a contest where a player strictly prefers not to learn his opponent’s value of
winning. While it may seem intuitive that a given HNEBCE should be better
for agent welfare than a BCE which fails the hear-no-evil condition, I have also
provided a further example to show this is not the case, where a Pareto-optimal
outcome is a BCE but not a HNEBCE. Finally, we have seen that for a broad
class of 2x2x2 coordination games, every symmetric BCE satisfies the hear-no-
evil condition.

7 Appendix
To see that there are no other pure-strategy equilibria of pG,Sq, note that if A
plays 2.222 with probability 1 then when vB “ 5 B will play 1.111 and when
vB “ 15 B will play 3.573. But in this case A would prefer to deviate to 2.295.
And if A plays 2.4 with probability 1, then when vB “ 5 B will play 1.093 and
when vB “ 15 B will play 3.6. But then A would again prefer to deviate to
2.295. Thus there are no other pure-strategy equilibria when both parties have
complete information.

It remains to rule out mixed-strategy equilibria. Let σipxiq denote the prob-
ability of agent i choosing effort level xi. First consider the case of full informa-
tion.

When vB “ 5, note that 3.573 and 3.6 are dominated strategies for B, and
will not be played in any equilibrium. Given that B will not be playing these
strategies, A will choose not to play 2.4 or 2.295, since both will be dominated
by 2.222. Given this, B will strictly prefer to play 1.111, and there are no mixed
equilibria.

When vB “ 15, B will not play 1.093 or 1.111, as both are dominated
strategies. Given this, A will not play 2.222 or 2.295, as both are dominated
by 2.4. The strict best response for B in this case is 3.6, so there are no mixed
equilibria.

Hence there are no other equilibria of pG,S˚q besides the pure-strategy equi-
librium outlined above.

Finally, consider the game pG,Sq when B knows vB but A is uninformed.
When vB “ 5, B will play either 1.093 or 1.111. In order for B to be willing

to randomize between them, we must have .55555671σAp2.222q` .52σAp2.295q`
.472σAp2.4q “ .5556σAp2.222q ` .51994σAp2.295q ` .471σAp2.4q.

When vB “ 15, B will play either 3.573 or 3.6. In order for B to be willing to
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randomize between them, we must have 5.6755σAp2.222q ` 5.5604σAp2.295q `
5.39987795σAp2.4q “ 5.56752σAp2.222q ` 5.5603σAp2.295q ` 5.4σAp2.4q.

In order for A to be willing to randomize between 2.222 and 2.295, we
must have 4.481σBp1.093q` 4.444σBp1.111q` 1.612σBp3.573q` 1.595σBp3.6q “
4.479σBp1.093q ` 4.443σBp1.111q ` 1.616σBp3.573q ` 1.598σBp3.6q.

In order for A to be willing to randomize between 2.295 and 2.4, we must have
4.479σBp1.093q`4.443σBp1.111q`1.616σBp3.573q`1.598σBp3.6q “ 4.471σBp1.093q`
4.436σBp1.111q ` 1.618σBp3.573q ` 1.6σBp3.6q.

In order for A to be willing to randomize between 2.222 and 2.4, we must have
4.481σBp1.093q`4.444σBp1.111q`1.612σBp3.573q`1.595σBp3.6q “ 4.471σBp1.093q`
4.436σBp1.111q ` 1.618σBp3.573q ` 1.6σBp3.6q.

Putting these three equations in matrix form, obtain:
»

–

4.481 4.444 1.612 1.595
4.479 4.443 1.616 1.598
4.481 4.444 1.612 1.595

fi

fl

»

—

—

–

σBp1.093q
σBp1.111q
σBp3.573q
σBp3.6q

fi

ffi

ffi

fl

“

»

–

4.479 4.443 1.616 1.598
4.471 4.436 1.618 1.6
4.471 4.436 1.618 1.6

fi

fl

»

—

—

–

σBp1.093q
σBp1.111q
σBp3.573q
σBp3.6q

fi

ffi

ffi

fl

which simplifies to
»

–

.002 .001 ´.004 ´.003

.008 .007 ´.002 ´.002
.01 .008 ´.006 ´.005

fi

fl

»

—

—

–

σBp1.093q
σBp1.111q
σBp3.573q
σBp3.6q

fi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

Row reducing this yields
»

–

1 0 ´4.333 ´3.167
0 1 4.667 3.333
0 0 0 0

fi

fl

»

—

—

–

σBp1.093q
σBp1.111q
σBp3.573q
σBp3.6q

fi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

which has no solution with σBp¨q P r0, 1s. Thus there is no equilibrium in
which A randomizes over all three effort levels.

Next we must check if there is an equilibrium in which A randomizes between
two effort levels. If A randomizes between 2.222 and 2.295, then effort level 3.6
will be strictly dominated for B. When vB “ 15 B will always choose effort
level 3.573, and when vB “ 5 B will choose either 1.093 or 1.111. However, if
σBp3.573q “ .5, then regardless of the values of σBp1.093q and σp1.111q, A will
prefer to only choose effort level 2.295 and not randomize.

If A randomizes between 2.295 and 2.4, then when vB “ 5 B will always
choose effort level 1.093, and when vB “ 15, B will choose either effort level 3.357
or 3.6. However, if σBp1.093q “ .5, then regardless of σBp3.357q or σBp3.6q, A
will prefer to choose effort level 2.295 and not randomize.

If A randomizes between 2.222 and 2.4, then when vB “ 5 B will choose
either 1.093 or 1.111, and when vB “ 15 B will choose either 3.357 or 3.6. In
order for A to be willing to randomize, it must be true that 4.481σBp1.093q `
4.444σBp1.111q`1.612σBp3.573q`1.595σBp3.6q “ 4.471σBp1.093q`4.436σBp1.111q`
1.618σBp3.573q ` 1.6σBp3.6q, or equivalently

.01σBp1.093q ` .008σBp1.111q ´ .006σBp3.573q ` ´.005σBp3.6q “ 0.
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Since σBp1.111q “ .5´ σBp1.093q and σBp3.6q “ .5´ σBp3.573q, we can rewrite
this as

.01σBp1.093q`.004´.008σBp1.093q´.006σBp3.573q`´.0025`.005σBp3.573q “ 0

and again as
.002σBp1.093q ´ .001σBp3.573q ` .0015 “ 0.

This simplifies to 2σBp1.093q ` 1.5 “ σBp3.573q. Since this has no solution for
σBp¨q P r0, 1s, there is no equilibrium where A mixes between 2.222 and 2.295.

Hence there are no other equilibria of pG,Sq besides the unique pure-strategy
equilibrium outlined.
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